算法和数据结构是一个程序员的内功,所以经常在一些笔试中都会要求手写一些简单的排序算法,以此考验面试者的编程水平。下面我就简单介绍八种常见的排序算法,一起学习一下。
思路:
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name BubbleSort
* @date 2020-09-05 21:38
**/
public class BubbleSort extends BaseSort {
public static void main(String[] args) {
BubbleSort sort = new BubbleSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
for (int i = 0; i < nums.length - 1; i++) {
for (int j = 0; j < nums.length - i - 1; j++) {
if (nums[j] > nums[j + 1]) {
int temp = nums[j];
nums[j] = nums[j + 1];
nums[j + 1] = temp;
}
}
}
}
}
//10万个数的数组,耗时:21554毫秒
平均时间复杂度:O(n²)
空间复杂度:O(1)
算法稳定性:稳定
思路:
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name InsertSort
* @date 2020-09-05 22:34
**/
public class InsertSort extends BaseSort {
public static void main(String[] args) {
BaseSort sort = new InsertSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
for (int i = 0; i < nums.length - 1; i++) {
//当前值
int curr = nums[i + 1];
//上一个数的指针
int preIndex = i;
//在数组中找到一个比当前遍历的数小的第一个数
while (preIndex >= 0 && curr < nums[preIndex]) {
//把比当前遍历的数大的数字往后移动
nums[preIndex + 1] = nums[preIndex];
//需要插入的数的下标往前移动
preIndex--;
}
//插入到这个数的后面
nums[preIndex + 1] = curr;
}
}
}
//10万个数的数组,耗时:2051毫秒
平均时间复杂度:O(n²)
空间复杂度:O(1)
算法稳定性:稳定
思路:
第一轮,找到最小的元素,和数组第一个数交换位置。
第二轮,找到第二小的元素,和数组第二个数交换位置...
直到最后一个元素,排序完成。
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name SelectSort
* @date 2020-09-06 22:27
**/
public class SelectSort extends BaseSort {
public static void main(String[] args) {
SelectSort sort = new SelectSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
for (int i = 0; i < nums.length; i++) {
int minIndex = i;
for (int j = i + 1; j < nums.length; j++) {
if (nums[j] < nums[minIndex]) {
minIndex = j;
}
}
if (minIndex != i) {
int temp = nums[i];
nums[minIndex] = temp;
nums[i] = nums[minIndex];
}
}
}
}
//10万个数的数组,耗时:8492毫秒
算法复杂度:O(n²)
算法空间复杂度:O(1)
算法稳定性:不稳定
思路:
把数组分割成若干(h)个小组(一般数组长度length/2),然后对每一个小组分别进行插入排序。每一轮分割的数组的个数逐步缩小,h/2->h/4->h/8,并且进行排序,保证有序。当h=1时,则数组排序完成。
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name SelectSort
* @date 2020-09-06 22:27
**/
public class ShellSort extends BaseSort {
public static void main(String[] args) {
ShellSort sort = new ShellSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
int length = nums.length;
int temp;
//步长
int gap = length / 2;
while (gap > 0) {
for (int i = gap; i < length; i++) {
temp = nums[i];
int preIndex = i - gap;
while (preIndex >= 0 && nums[preIndex] > temp) {
nums[preIndex + gap] = nums[preIndex];
preIndex -= gap;
}
nums[preIndex + gap] = temp;
}
gap /= 2;
}
}
}
//10万个数的数组,耗时:261毫秒
算法复杂度:O(nlog2n)
算法空间复杂度:O(1)
算法稳定性:稳定
快排,面试最喜欢问的排序算法。这是运用分治法的一种排序算法。
思路:
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name SelectSort
* @date 2020-09-06 22:27
**/
public class QuickSort extends BaseSort {
public static void main(String[] args) {
QuickSort sort = new QuickSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
quickSort(nums, 0, nums.length - 1);
}
private void quickSort(int[] nums, int star, int end) {
if (star > end) {
return;
}
int i = star;
int j = end;
int key = nums[star];
while (i < j) {
while (i < j && nums[j] > key) {
j--;
}
while (i < j && nums[i] <= key) {
i++;
}
if (i < j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
nums[star] = nums[i];
nums[i] = key;
quickSort(nums, star, i - 1);
quickSort(nums, i + 1, end);
}
}
//10万个数的数组,耗时:50毫秒
算法复杂度:O(nlogn)
算法空间复杂度:O(1)
算法稳定性:不稳定
归并排序是采用分治法的典型应用,而且是一种稳定的排序方式,不过需要使用到额外的空间。
思路:
归并排序的优点在于最好情况和最坏的情况的时间复杂度都是O(nlogn),所以是比较稳定的排序方式。
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name MergeSort
* @date 2020-09-08 23:30
**/
public class MergeSort extends BaseSort {
public static void main(String[] args) {
MergeSort sort = new MergeSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
//归并排序
mergeSort(0, nums.length - 1, nums, new int[nums.length]);
}
private void mergeSort(int star, int end, int[] nums, int[] temp) {
//递归终止条件
if (star >= end) {
return;
}
int mid = star + (end - star) / 2;
//左边进行归并排序
mergeSort(star, mid, nums, temp);
//右边进行归并排序
mergeSort(mid + 1, end, nums, temp);
//合并左右
merge(star, end, mid, nums, temp);
}
private void merge(int star, int end, int mid, int[] nums, int[] temp) {
int index = 0;
int i = star;
int j = mid + 1;
while (i <= mid && j <= end) {
if (nums[i] > nums[j]) {
temp[index++] = nums[j++];
} else {
temp[index++] = nums[i++];
}
}
while (i <= mid) {
temp[index++] = nums[i++];
}
while (j <= end) {
temp[index++] = nums[j++];
}
//把临时数组中已排序的数复制到nums数组中
if (index >= 0) System.arraycopy(temp, 0, nums, star, index);
}
}
//10万个数的数组,耗时:26毫秒
算法复杂度:O(nlogn)
算法空间复杂度:O(n)
算法稳定性:稳定
大顶堆概念:每个节点的值都大于或者等于它的左右子节点的值,所以顶点的数就是最大值。
思路:
构建大顶堆的思路,可以看代码注释。
动画演示:
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name HeapSort
* @date 2020-09-08 23:34
**/
public class HeapSort extends BaseSort {
public static void main(String[] args) {
HeapSort sort = new HeapSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
heapSort(nums);
}
private void heapSort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
//构建大根堆
createTopHeap(nums);
int size = nums.length;
while (size > 1) {
//大根堆的交换头尾值,固定最大值在末尾
swap(nums, 0, size - 1);
//末尾的索引值往左减1
size--;
//重新构建大根堆
updateHeap(nums, size);
}
}
private void createTopHeap(int[] nums) {
for (int i = 0; i < nums.length; i++) {
//当前插入的索引
int currIndex = i;
//父节点的索引
int parentIndex = (currIndex - 1) / 2;
//如果当前遍历的值比父节点大的话,就交换值。然后继续往上层比较
while (nums[currIndex] > nums[parentIndex]) {
//交换当前遍历的值与父节点的值
swap(nums, currIndex, parentIndex);
//把父节点的索引指向当前遍历的索引
currIndex = parentIndex;
//往上计算父节点索引
parentIndex = (currIndex - 1) / 2;
}
}
}
private void updateHeap(int[] nums, int size) {
int index = 0;
//左节点索引
int left = 2 * index + 1;
//右节点索引
int right = 2 * index + 2;
while (left < size) {
//最大值的索引
int largestIndex;
//如果右节点大于左节点,则最大值索引指向右子节点索引
if (right < size && nums[left] < nums[right]) {
largestIndex = right;
} else {
largestIndex = left;
}
//如果父节点大于最大值,则把父节点索引指向最大值索引
if (nums[index] > nums[largestIndex]) {
largestIndex = index;
}
//如果父节点索引指向最大值索引,证明已经是大根堆,退出循环
if (largestIndex == index) {
break;
}
//如果不是大根堆,则交换父节点的值
swap(nums, largestIndex, index);
//把最大值的索引变成父节点索引
index = largestIndex;
//重新计算左节点索引
left = 2 * index + 1;
//重新计算右节点索引
right = 2 * index + 2;
}
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
}
//10万个数的数组,耗时:38毫秒
算法复杂度:O(nlogn)
算法空间复杂度:O(1)
算法稳定性:不稳定
思路:
对于数组中的元素分布均匀的情况,排序效率较高。相反的,如果分布不均匀,则会导致大部分的数落入到同一个桶中,使效率降低。
动画演示(来源于五分钟学算法,侵删):
实现代码:
/**
* @author Ye Hongzhi 公众号:java技术爱好者
* @name BucketSort
* @date 2020-09-08 23:37
**/
public class BucketSort extends BaseSort {
public static void main(String[] args) {
BucketSort sort = new BucketSort();
sort.printNums();
}
@Override
protected void sort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
bucketSort(nums);
}
public void bucketSort(int[] nums) {
if (nums == null || nums.length < 2) {
return;
}
//找出最大值,最小值
int max = Integer.MIN_VALUE;
int min = Integer.MAX_VALUE;
for (int num : nums) {
min = Math.min(min, num);
max = Math.max(max, num);
}
int length = nums.length;
//桶的数量
int bucketCount = (max - min) / length + 1;
int[][] bucketArrays = new int[bucketCount][];
//遍历数组,放入桶内
for (int i = 0; i < length; i++) {
//找到桶的下标
int index = (nums[i] - min) / length;
//添加到指定下标的桶里,并且使用插入排序排序
bucketArrays[index] = insertSortArrays(bucketArrays[index], nums[i]);
}
int k = 0;
//合并全部桶的
for (int[] bucketArray : bucketArrays) {
if (bucketArray == null || bucketArray.length == 0) {
continue;
}
for (int i : bucketArray) {
//把值放回到nums数组中
nums[k++] = i;
}
}
}
//每个桶使用插入排序进行排序
private int[] insertSortArrays(int[] arr, int num) {
if (arr == null || arr.length == 0) {
return new int[]{num};
}
//创建一个temp数组,长度是arr数组的长度+1
int[] temp = new int[arr.length + 1];
//把传进来的arr数组,复制到temp数组
for (int i = 0; i < arr.length; i++) {
temp[i] = arr[i];
}
//找到一个位置,插入,形成新的有序的数组
int i;
for (i = temp.length - 2; i >= 0 && temp[i] > num; i--) {
temp[i + 1] = temp[i];
}
//插入需要添加的值
temp[i + 1] = num;
//返回
return temp;
}
}
//10万个数的数组,耗时:8750毫秒
算法复杂度:O(M+N)
算法空间复杂度:O(M+N)
算法稳定性:稳定(取决于桶内的排序算法,这里使用的是插入排序所以是稳定的)。
动画演示来源于算法学习网站:https://visualgo.net
讲完这些排序算法后,可能有人会问学这些排序算法有什么用呢,难道就为了应付笔试面试?平时开发也没用得上这些。
我觉得我们应该换个角度来看,比如高中时我们学物理,化学,数学,那么多公式定理,现在也没怎么用得上,但是高中课本为什么要教这些呢?
我的理解是:第一,普及一些常识性的问题。第二,锻炼思维,提高解决问题的能力。第三,为了区分人才。
回到学排序算法有什么用的问题上,实际上也一样。这些最基本的排序算法就是一些常识性的问题,作为开发者应该了解掌握。同时也锻炼了编程思维,其中包含有双指针,分治,递归等等的思想。最后在面试中体现出来的就是人才的划分,懂得这些基本的排序算法当然要比不懂的人要更有竞争力。
建议大家看完之后,能找时间动手写一下,加深理解。
问:卡牌大师游戏闪退怎么解决?答:游戏闪退无非就是内存不足的问题,通常情况下,内存不足就会出现游戏闪退。这个时候将不用的程序清理掉,就可以玩了。当然也会出现因游戏文件包损坏,导致游戏闪退弹出。这种情况一般都是非法安装外挂和辅助造成的,所以建议大家不要用辅助等类型的第三方软件。以上就是常见的二种现象,
2024-11-22 10:29:28
炸麻叶儿是我们北方的传统特色小吃,小时候逢年过节、家家户户都会预备一些,焦香酥脆、越嚼越香,可是那时候最好的零食。现在生活条件好了,各式各样的零食应接不暇,眼看着这些传统的、经典的小吃逐渐淡出了大家的视野,着实觉得有些可惜。今天,我就把这款地道的、河南特有的、酥的直掉渣的炸麻叶做法,再给大家分享一遍
2024-11-22 09:35:04
最近发现,越来越多的人开始喜欢机械手表了。相比石英手表,机械手表虽然更贵,但是也更有质感和品味,也是不争的事实。相信很多越来越喜欢机械表的人都是认定了这个理儿。其实,我们常听说的一些大牌钟表,都是以机械手表见长,甚至有不少大牌手表都没有石英手表,比如朗格、宝玑等。论知名度和影响力,以下这些机械手表比
2024-11-22 09:19:48
用料青辣椒一根 红萝卜一根 生芒果一颗 盐渍话梅3粒切丝 日本话梅片6片切丝 备用 柠檬汁适量 矿泉水适量 少许盐 糖 太太乐鸡汁适量调一个咸鲜口 好了… 做法步骤1、买一个芒果准备学做牛肉芒果条菜的…2、切开一看 哇~生的 …3、只能改菜了 凉拌吧 红萝卜切丝 青椒切丝 盐渍话梅切丝(切出来成粒了
2024-11-22 09:04:05
传说东汉刘秀在未登大宝前有过一段很落魄的日子,亏得一位农村老汉割了一种野菜给刘秀充饥,刘秀吃后觉得甚是美味,便给野菜起了“救菜”的名字。此菜就是现在的韭菜,古语有云:“春初早韭,秋末晚菘”,意思是初春时刻,在经历过一个寒冬的缓慢生长后,是韭菜最为鲜嫩完美的一段时间,晚秋次之,夏天味道最差,所以各位碰
2024-11-22 08:49:26
今天来跟大家分享一个洋葱肉丸汤的做法,这样做出来的肉丸子非常好吃,比较鲜嫩,一点也不柴,爽滑可口,而且汤汁喝起来特别鲜美,光看着就让人特别有食欲,而且它的营养特别丰富。这道洋葱肉丸汤的做法是比较简单的,很容易就能够做出来,非常适合在夏天食用。如果家里有小朋友,那么经常给它吃这样的洋葱肉丸汤,可以起到
2024-11-22 08:34:03