95%置信区间的意思是我们估计的目标参数有95%的可能性落入某区间。
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidenceinterval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度。置信区间给出的是被测量参数的测量值的可信程度,即前面所要求的一个概率。
置信水平一般用百分比表示,因此置信水平0.95上的置信空间也可以表达为:95%置信区间。置信区间的两端被称为置信极限。对一个给定情形的估计来说,显著性水平越高,所对应的置信区间就会越大。
95%置信区间指的是某个总体参数的真实值有95%的概率会落在测量结果的区间内。
例如:通过测量某班级学生的考试成绩,得到有95%的置信水平该班成绩的置信区间在60分到80分之间。
那么可以说:在多次抽样后,由95%的样本得到的区间会包含该班学生考试的平均成绩的真值。
扩展资料:
置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是可信区间。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述。
故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。
置信区间(Confidence interval)是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间是对这个样本的某个总体参数的区间估计。置信水平为95%的意思是多次抽样中有95%的置信区间包含未知的参数值而另外的5%则不包含真值。
置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。
在现实生活中,我们在保证置信度的前提下,应尽量缩短置信区间的长度,这有利于做出正确的决策,因为保证置信度相当于是给定了准确度,而缩短置信区间长度相当于提高了信息有效密度,置信区间越长,得出的信息的有效密度越低,置信区间越短,得出的信息的有效密度越高。
比如,假设班上学生小明和小华说出的话的可信度都是90%;小明说班级的月考数学成绩平均分是在90到140之间,而小华说班级的月考数学成绩平均分是在100到120之间。选择后者,因为可以得到更加准确且有效的信息。所以,我们要找区间最短的置信区间,即找最优置信区间。
扩展资料
计算“置信区间”是应用性研究,是做完显著度检验之后的跟进分析。显著度检验可以让人知道能在什么信心度上放弃零假设。
零假设的内容是:总体参数(例如平均值、回归系数、净回归系数)等于0或者与0没有值得关注的(显著的)差异。显著度检验中的“p值”是以正话反说的方式表示信心度。例如,p=0.05,意思是信心度为95%,亦即“放弃了零假设,但只冒了5%的犯一类错误的风险”。
详细点说,显著度检验的目的是判断一个观察到的“非零的”样本统计值是否“显著地”不同于0。检验的起点是假定零假设为真,也就是假定总体参数为0,然后预测,如果零假设真,那么有多大的概率观察到这个已经观察到的样本统计值,亦即有多大的概率抽到我们已经抽到的这个样本。
如果预测出的概率很小,比如只有5%,抽到了,意味着被预测发生概率只有5%的事件发生了,这说明预测不准确,进而说明预测所依据的零假设可能是假的。
一、如何理解95%置信区间?95%置信区间的意思是我们估计的目标参数有95%的可能性落入某区间。置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confiden...
2022-08-16 09:12:50