等于数字“1”。
根据数学定义,任何一个非零数的零次方为1。具体的说任何数的0次方等于多少分两种情况:底数不为零时等于1;为零时无意义。所以综合起来,一个数的零次方等于“1”。
这里需要注意0的0次方是悬而未决的,在某些领域定义为1、某些领域不定义(无意义)。定义的理由是它在某些领域有用处,方便化简公式。不定义的理由是以连续性为考量,不定义不连续点的函数值。
数字的零次方的特点:
数字的零次方,又叫做数字的零次幂,数学中“幂”是乘方的结果,而乘方的表示是通过在一个数字上加上标的形式来实现的,故这就像在一个数上“盖上了一头巾”,在现实中盖头巾又有升级的意思,所以把乘方叫做幂正好契合了数学中指数级数快速增长含义,形式上也很契合,所以叫做幂。
任何除0以外的数的0次方都是1,0的0次方没有意义。
任何非零数的0次方都等于1的推算方法:
5的3次方是125,即5×5×5=125;
5的2次方是25,即5×5=25;
5的1次方是5,即5×1=5;
扩展资料
当幂的指数为负数时,称为“负指数幂”。正数a的-r次幂(r为任何正数)定义为a的r次幂的倒数。
如:
2的6次方=2^6=2×2×2×2×2×2=4×2×2×2×2=8×2×2×2=16×2×2=32×2=64
3的4次方=3^4=3×3×3×3=9×3×3=27×3=81
如上面的式子所示,2的6次方,就是6个2相乘,3的4次方,就是4个3相乘。
如果是比较大的数相乘,还可以结算计算器、计算机等计算工具来进行计算。
任何除了0以外的数的0次方都等于1。
设a为某数,n为正整数,a的n次方表示为a?,表示n个a连乘所得之结果,如2?=2×2×2×2=16。次方的定义还可以扩展到0次方、负数次方、小数次方、无理数次方甚至是虚数次方。
一个数的零次方:
任何非零数的0次方都等于1。原因如下:
这里以4次方举例证明:
5的4次方是625,即5×5×5×5=625。
5的3次方是125,即5×5×5=125。
5的2次方是25,即5×5=25。
5的1次方是5,即5×1=5。
由此可见,n≧0时,将5的(n+1)次方变为5的n次方需除以一个5,所以可定义5的0次方为:5÷5=1。证明完毕得出结果为1,将底数和次数都推广到任意数(底数不为0),得出结论。
任何正数的0次方都是1。0的任何次方都得0。
负数次方:一个非零数的-n次方=这个数的倒数的n次方。
一、一个数的零次方等于几?等于数字“1”。根据数学定义,任何一个非零数的零次方为1。具体的说任何数的0次方等于多少分两种情况:底数不为零时等于1;为零时无意义。所以综合起来,一个数的零次方等于“1”。...
2022-08-21 11:02:24
一、0的n次方等于几0的n次方,当n大于0时,等于0。当n等于0时,0的0次方没有意义。当n小于0时,也没有意义。当n为正数时为0,n为负数时无意义。0的正数次方等于0;0的非正数次方(0次方和负数次...
2022-08-14 12:47:55